
Embedding Computations & Code
Session 3

Embedding Computations & Code

Session 3

Mickaël CANOUIL, Ph.D.1*

Saturday, the 7th of February, 2026

Affiliations

1 Independent Contractor, Lille, France

ORCID

 Mickaël CANOUIL, Ph.D.: 0000-0002-3396-4549

*Corresponding author: pro@mickael.canouil.dev

Independent Contractor 1 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0

https://orcid.org/0000-0002-3396-4549
mailto:pro@mickael.canouil.dev


Ta
b

le
 o

f 
C

o
n

te
n

ts
Embedding Computations & Code
Session 3

Table of Contents

1. Session Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠4

1.1. Session 3: Embedding Computations & Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠5

1.2. Session Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠5

1.3. Learning Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠5
2. Computing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠6

2.1. Setup R, Python, and/or Julia for Quarto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠7

2.1.1. R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠7

2.1.2. Python (uv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠7

2.1.3. Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠7

2.2. Engine Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠8

2.3. What is a Code Cell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠8

2.4. Code Cell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠8

2.5. Why Use Code Cells? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠9

2.5.1. Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠9

2.5.2. Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠9
3. Execution Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠10

3.1. Setting Execution Options Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠11

3.2. Code Cells Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠11
4. Cache and Freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠13

4.1. Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.1.1. Cache: Stores computation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.1.2. Freeze: Prevents re-execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.2. Cache: Development Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.3. Freeze: Collaboration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.4. Key Behavioural Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14

4.5. When to Use Each . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.5.1. Use Cache When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.5.2. Use Freeze When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.6. Essential CLI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.6.1. Cache Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.6.2. Freeze Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15

4.7. Golden Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠15
5. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠16

5.1. What Are Parameters? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17

5.2. Defining Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17

5.2.1. Python ( papermill ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17

5.2.2. R ( knitr ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17

5.3. Passing Parameters: Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠18

5.4. Passing Parameters: YAML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠18

5.5. Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

Independent Contractor 2 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Ta
b

le
 o

f 
C

o
n

te
n

ts
Embedding Computations & Code
Session 3

5.5.1. Setup (Jupyter/Python) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.5.2. Using parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.5.3. Command line usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.6. Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.6.1. ✅ Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.6.2. ❌ Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

5.7. Workflow Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠20

5.7.1. Automated reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠20
6. Hands-On Exercise: Adding Computational Power to Your Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠21

6.1. Exercise Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠22

6.2. Part 1: Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠22

6.2.1. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠22

6.2.2. R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠22

6.2.3. Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

6.3. Part 2: Replace Static with Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

6.3.1. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

6.3.2. R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

6.3.3. Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.4. Part 3: Create Your First Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.4.1. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.4.2. R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.4.3. Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.5. Part 4: Experiment with Code Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.5.1. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

6.5.2. R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠25

6.5.3. Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠25

6.6. Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠25

Independent Contractor 3 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

1. Session Overview

1.1. Session 3: Embedding Computations & Code
1.2. Session Objectives
1.3. Learning Objectives

Independent Contractor 4 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



1.
 S

es
si

o
n

 O
ve

rv
ie

w
Embedding Computations & Code
Session 3

1.1. Session 3: Embedding Computations & Code

• Computing Environments

‣ Setup R, Python, and Julia for Quarto.

‣ Engine configuration and code cell structure.

‣ Understanding multi-language workflows.

• Execution Options

‣ Code cell options using comment + pipe syntax.

‣ Control code visibility, evaluation, and output.

‣ Global execution settings in YAML.

• Cache and Freeze

‣ Cache for development speed vs freeze for collaboration.

‣ Understanding Jupyter and Knitr caching systems.

‣ CLI commands for cache and freeze management.

• Parameters

‣ Creating dynamic document variations.

‣ Defining parameters in Python and R.

‣ Command-line parameter passing and YAML files.

1.2. Session Objectives

This session explores Quarto’s computational capabilities, focusing on seamless multi-language work

flows, code cell options, and integration patterns for R and Python data science stacks.

1.3. Learning Objectives

By the end of this session, participants will be able to:

• Execute R , Python , Julia code.

• Configure code cells using “comment symbol” + “pipe” ( | ) syntax.

• Control code visibility and execution.

• Cache computations for improved performance.

Independent Contractor 5 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

2. Computing Environments

2.1. Setup R, Python, and/or Julia for Quarto
2.1.1. R
2.1.2. Python (uv)
2.1.3. Julia

2.2. Engine Configuration
2.3. What is a Code Cell?
2.4. Code Cell Structure
2.5. Why Use Code Cells?

2.5.1. Reproducibility
2.5.2. Documentation

Independent Contractor 6 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



2.
 C

o
m

p
u

ti
n

g
 E

n
vi

ro
n

m
en

ts
Embedding Computations & Code
Session 3

2.1. Setup R, Python, and/or Julia for Quarto

2.1.1. R

R

# Install renv if not already installed
install.packages("renv")

# Initialise project
renv::init()

# Install packages
renv::install("rmarkdown")

# Save current state
renv::snapshot()

2.1.2. Python (uv)

BASH

# Install uv (if not installed)
pip install uv

# Initialise project
uv init --no-package --vcs none

# Create virtual environment
uv venv

# Activate environment
source .venv/bin/activate

# Add packages
uv add jupyter papermill

2.1.3. Julia

JULIA

# Start Julia in your project directory
using Pkg

# Activate current directory as project
Pkg.activate(".")

Independent Contractor 7 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



2.
 C

o
m

p
u

ti
n

g
 E

n
vi

ro
n

m
en

ts
Embedding Computations & Code
Session 3

# Add packages
Pkg.add("IJulia")

# Instantiate environment
Pkg.instantiate()

2.2. Engine Configuration

Configure engines in your document header:

• knitr

• jupyter

• julia

YAML

---
engine: knitr
---

YAML

---
engine: jupyter
jupyter: python3
---

YAML

---
engine: julia
---

 Tip

Set explicitly the engine in your document header instead of relying on auto-detection which does 

not work for inline code (i.e., `{language} ...` ).

2.3. What is a Code Cell?

A code cell (also called a code chunk) is a section of executable code (defined by ```{language} ) 

embedded within your Quarto document.

Code cells allow you to:

• Execute programming code directly in your document.

• Display both the code and its output.

• Create reproducible analyses and reports.

2.4. Code Cell Structure

QMD

```{python} 1

#| label: my-plot
#| echo: true

#| fig-cap: "Sample visualization" 2

Independent Contractor 8 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



2.
 C

o
m

p
u

ti
n

g
 E

n
vi

ro
n

m
en

ts
Embedding Computations & Code
Session 3

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.title("Sine Wave")

plt.show() 3

```

1  Computing language (e.g., python , r , julia ).

2  Code cell options (e.g., label , echo , eval ).

3  Code content (your actual programming code).

2.5. Why Use Code Cells?

2.5.1. Reproducibility

• Code and results stay together.

• Easy to re-run analyses.

• Version control friendly.

2.5.2. Documentation

• Combine narrative and code.

• Show methodology clearly.

• Create living documents.

Independent Contractor 9 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

3. Execution Options

3.1. Setting Execution Options Globally
3.2. Code Cells Options

Independent Contractor 10 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



3.
 E

xe
cu

ti
o

n
 O

p
ti

o
n

s
Embedding Computations & Code
Session 3

3.1. Setting Execution Options Globally

YAML

execute:
  ...

Table 3.1:  execute  options

Option Description

eval Evaluate the code chunk (if false , just echos the code into the output).

echo Include the source code in output

output Include the results of executing the code in the output ( true , false , or 

asis  to indicate that the output is raw markdown and should not have any 

of Quarto’s standard enclosing markdown).

warning Include warnings in the output.

error Include errors in the output (note that this implies that errors executing code 

will not halt processing of the document).

include Catch all for preventing any output (code or results) from being included 

(e.g., include: false  suppresses all output from the code block).

renderings Specify rendering names for the plot or table outputs of the cell, e.g., 

[light, dark] . See Renderings.

3.2. Code Cells Options

The “comment symbol” + “pipe” ( | ) syntax allows to pass options to code cells.

Code Visibility Control:

QMD

```{r}

#| echo: false 1

#| eval: false 2

#| include: false 3

#| code-fold: true 4

```

1  Hide code, show output.

2  Show code, don’t execute.

3  Execute code, hide everything.

4  Collapsible code blocks.

Output Control:

Independent Contractor 11 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0

https://quarto.org/docs/computations/renderings.html


3.
 E

xe
cu

ti
o

n
 O

p
ti

o
n

s
Embedding Computations & Code
Session 3

QMD

```{r}

#| warning: false 1

#| message: false 2

#| error: true 3

#| output: false 4

```

1  Suppress warnings

2  Suppress messages

3  Show errors for debugging

4  Hide all output

Independent Contractor 12 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

4. Cache and Freeze

4.1. Two Systems
4.1.1. Cache: Stores computation results
4.1.2. Freeze: Prevents re-execution

4.2. Cache: Development Speed
4.3. Freeze: Collaboration Control
4.4. Key Behavioural Differences
4.5. When to Use Each

4.5.1. Use Cache When
4.5.2. Use Freeze When

4.6. Essential CLI Commands
4.6.1. Cache Control
4.6.2. Freeze Management

4.7. Golden Rules

Independent Contractor 13 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



4
. C

ac
h

e 
an

d
 F

re
ez

e
Embedding Computations & Code
Session 3

4.1. Two Systems

4.1.1. Cache: Stores computation re

sults

• Speeds up development.

• Works during iteration.

• Engine-specific behaviour.

4.1.2. Freeze: Prevents re-execution

• Enables collaboration.

• Project-wide control.

• Version control friendly.

4.2. Cache: Development Speed

Store expensive computation results to avoid re-running during development.

YAML

execute:
  cache: true

Two Types:

• Jupyter Cache: Document-level (all-or-nothing).

• Knitr Cache: Cell-level (granular control).

4.3. Freeze: Collaboration Control

Prevent documents from re-executing during project renders.

Results saved in _freeze  directory (commit to version control).

YAML

execute:
 freeze: auto    # Re-render only when source changes
 freeze: true    # Never re-render during project render

4.4. Key Behavioural Differences

Action Cache Freeze

Individual document render ✅ Used ❌ Ignored

Project render ✅ Used ✅ Controls execution

Prose changes No effect No effect

Code changes Invalidates cache Triggers re-render (auto mode)

Independent Contractor 14 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



4
. C

ac
h

e 
an

d
 F

re
ez

e
Embedding Computations & Code
Session 3

4.5. When to Use Each

4.5.1. Use Cache When

• Developing multi format documents.

• Iterating on analysis.

• Working with expensive computations.

• Editing prose frequently.

4.5.2. Use Freeze When

• Working in teams.

• Managing large projects.

• Environment setup is complex.

• Results need to be reproducible.

4.6. Essential CLI Commands

4.6.1. Cache Control

BASH

quarto render --cache           # Force cache use
quarto render --no-cache        # Disable cache
quarto render --cache-refresh   # Force refresh

4.6.2. Freeze Management

BASH

quarto render document.qmd      # Always executes (ignores freeze)
quarto render                   # Respects freeze settings

4.7. Golden Rules

1. Cache for Development.

Use when iterating on individual documents.

2. Freeze for Collaboration.

Use when working with teams or managing large projects.

3. Different Scopes.

• Cache: Session-level performance.

• Freeze: Project-level workflow management.

4. Version Control.

Always commit _freeze  directory contents.

Independent Contractor 15 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

5. Parameters

5.1. What Are Parameters?
5.2. Defining Parameters

5.2.1. Python ( papermill )
5.2.2. R ( knitr )

5.3. Passing Parameters: Command Line
5.4. Passing Parameters: YAML Files
5.5. Practical Example

5.5.1. Setup (Jupyter/Python)
5.5.2. Using parameters
5.5.3. Command line usage

5.6. Best Practices

5.6.1. ✅ Do

5.6.2. ❌ Avoid
5.7. Workflow Integration

5.7.1. Automated reporting

Independent Contractor 16 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



5.
 P

ar
am

et
er

s
Embedding Computations & Code
Session 3

5.1. What Are Parameters?

Parameters allow you to create dynamic variations of the same document:

• Geographic reports → Different locations

• Time-based analysis → Different periods

• Scenario modelling → Different assumptions

• Multi-client reports → Different datasets

 Tip

Think of parameters as variables that make your documents code reusable and flexible.

5.2. Defining Parameters

5.2.1. Python ( papermill )

PYTHON

#| tags: [parameters]
alpha = 0.1
ratio = 0.5
country = "UK"
year = 2024

• Must use #| tags: [parameters]  comment.

• Provide sensible default values.

• Parameters available in top-level environment.

• Works with .qmd  and .ipynb  files.

5.2.2. R ( knitr )

YAML

---
title: "Sales Report"
params:
  region: "North"
  start_date: "2024-01-01"
  threshold: 1000
---

Access in R code:

Independent Contractor 17 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



5.
 P

ar
am

et
er

s
Embedding Computations & Code
Session 3

R

print(params[["region"]])

5.3. Passing Parameters: Command Line

Use the -P  ( --execute-param ) flag to override parameter values:

BASH

# Single parameter
quarto render report.qmd --execute-param country:France

# Multiple parameters  
quarto render report.qmd -P year:2023 -P region:Europe

# With output specification
quarto render report.qmd -P country:Germany --to typst

5.4. Passing Parameters: YAML Files

Create reusable parameter sets with YAML files:

params.yml

country: "Spain"
year: 2023
budget: 50000

Terminal

quarto render report.qmd \
  --execute-params params.yml

 Benefits

Version control, team sharing, complex configurations.

Independent Contractor 18 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



5.
 P

ar
am

et
er

s
Embedding Computations & Code
Session 3

5.5. Practical Example

5.5.1. Setup (Jupyter/Python)

QMD

```{{python}}
#| tags: [parameters]
region = "All"
quarter = "Q1" 
min_sales = 1000
```

5.5.2. Using parameters

QMD

```{{python}}
if region != "All":
   df = df[df['region'] == region]

df_filtered = df[df['sales'] >= 
min_sales]
title = f"{region} Sales - 
{quarter}"
```

5.5.3. Command line usage

BASH

quarto render sales.qmd \
  --execute-param region:North \
  --execute-param quarter:Q2

 Results

Customised report for North region, Q2 data.

5.6. Best Practices

5.6.1. ✅ Do

• Provide meaningful defaults.

• Use descriptive names.

• Document parameter types.

• Validate values in code.

• Use YAML for complex configs.

5.6.2. ❌ Avoid

• Generic names ( x , val ).

• Parameters without defaults.

• Hardcoded values.

• Overly complex structures.

Independent Contractor 19 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



5.
 P

ar
am

et
er

s
Embedding Computations & Code
Session 3

5.7. Workflow Integration

5.7.1. Automated reporting

BASH

# Daily reports
quarto render report.qmd -P date:"$(date +%Y-%m-%d)"

# Multiple outputs
for region in North South East West; do
  quarto render regional.qmd -P region:$region
done

 Perfect for

CI/CD pipelines, batch processing, scheduled reports.

Independent Contractor 20 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



Embedding Computations & Code
Session 3

6. Hands-On Exercise: Adding Computa

tional Power to Your Portfolio

6.1. Exercise Overview
6.2. Part 1: Environment Setup

6.2.1. Python
6.2.2. R
6.2.3. Julia

6.3. Part 2: Replace Static with Dynamic
6.3.1. Python
6.3.2. R
6.3.3. Julia

6.4. Part 3: Create Your First Visualization
6.4.1. Python
6.4.2. R
6.4.3. Julia

6.5. Part 4: Experiment with Code Visibility
6.5.1. Python
6.5.2. R
6.5.3. Julia

6.6. Success Criteria

Independent Contractor 21 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



6
. H

an
d

s-
O

n
 E

xe
rc

is
e:

 A
d

d
in

g
 C

o
m

p
u

ta
ti

o
n

al
 P

o
w

er
 t

o
 Y

o
u

r 
P

o
rt

fo
li

o
Embedding Computations & Code
Session 3

6.1. Exercise Overview

Objective: Transform your Session 2 portfolio document into a computational showcase by adding live 

code execution, demonstrating the power of embedding computations in Quarto documents using 

modern Python tools.

Example Code: Exercises

BASH

tar -xzf "03-exercises.tar.gz" -C "03-embedding-computations-code"

6.2. Part 1: Environment Setup

Choose your language and update your YAML header:

6.2.1. Python

YAML

---
title: "My Computational Portfolio"
author: "Your Name"
engine: jupyter
jupyter: python3
execute:
  echo: true
  warning: false
---

Install packages:

BASH

uv add polars plotnine # pip install polars plotnine

6.2.2. R

YAML

---
title: "My Computational Portfolio"
author: "Your Name"
engine: knitr
execute:
  echo: true
  warning: false
---

Independent Contractor 22 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0

assets/exercises/03-exercises.tar.gz


6
. H

an
d

s-
O

n
 E

xe
rc

is
e:

 A
d

d
in

g
 C

o
m

p
u

ta
ti

o
n

al
 P

o
w

er
 t

o
 Y

o
u

r 
P

o
rt

fo
li

o
Embedding Computations & Code
Session 3

Install packages:

R

install.packages(c("dplyr", "ggplot2"))

6.2.3. Julia

YAML

---
title: "My Computational Portfolio"
author: "Your Name"
engine: julia
execute:
  echo: true
  warning: false
---

Install packages:

JULIA

using Pkg
Pkg.add(["DataFrames", "Plots", "StatsPlots"])

6.3. Part 2: Replace Static with Dynamic

Replace your skills table from Session 2:

6.3.1. Python

• Create a Polars DataFrame  with your skills data.

• Include columns: skill name, confidence level, hours practiced.

• Use print()  to display the data nicely.

• Calculate total practice hours with pl.sum() .

• Show the result using inline code `{python} your_calculation` .

6.3.2. R

• Create a data.frame  with your skills data.

• Include columns: skill name, confidence level, hours practiced.

• Use knitr::kable()  to display the table nicely.

• Calculate total practice hours with sum() .

• Show the result using inline code `{r} your_calculation` .

Independent Contractor 23 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



6
. H

an
d

s-
O

n
 E

xe
rc

is
e:

 A
d

d
in

g
 C

o
m

p
u

ta
ti

o
n

al
 P

o
w

er
 t

o
 Y

o
u

r 
P

o
rt

fo
li

o
Embedding Computations & Code
Session 3

6.3.3. Julia

• Create a DataFrame  with your skills data.

• Include columns: skill name, confidence level, hours practiced.

• Display the DataFrame  directly.

• Calculate total practice hours with sum() .

• Show the result using inline code `{julia} your_calculation` .

6.4. Part 3: Create Your First Visualization

Make a chart of your skills:

6.4.1. Python

• Use plotnine to create a bar chart.

• Try geom_col()  or geom_bar() .

• Add proper labels with labs() .

• Use theme_minimal()  for clean styling.

• Add a figure caption with #| fig-cap: .

6.4.2. R

• Use ggplot2 to create a bar chart.

• Try geom_col()  or geom_bar() .

• Add proper labels with labs() .

• Use theme_minimal()  for clean styling.

• Add a figure caption with #| fig-cap: .

6.4.3. Julia

• Use Plots.jl to create a bar chart.

• Try bar()  function.

• Add proper labels with xlabel!()  and ylabel!() .

• Add a title with title!() .

• Add a figure caption with #| fig-cap: .

6.5. Part 4: Experiment with Code Visibility

Try different code cell options:

6.5.1. Python

• Create a cell with #| eval: false  (shows code, doesn’t run).

• Make a collapsible section with #| code-fold: true .

• Hide code with #| echo: false  but show output.

• Use #| include: false  for data setup.

Independent Contractor 24 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0



6
. H

an
d

s-
O

n
 E

xe
rc

is
e:

 A
d

d
in

g
 C

o
m

p
u

ta
ti

o
n

al
 P

o
w

er
 t

o
 Y

o
u

r 
P

o
rt

fo
li

o
Embedding Computations & Code
Session 3

6.5.2. R

• Create a cell with #| eval: false  (shows code, doesn’t run).

• Make a collapsible section with #| code-fold: true .

• Hide code with #| echo: false  but show output.

• Use #| include: false  for library loading.

6.5.3. Julia

• Create a cell with #| eval: false  (shows code, doesn’t run).

• Make a collapsible section with #| code-fold: true .

• Hide code with #| echo: false  but show output.

• Use #| include: false  for package imports.

6.6. Success Criteria

✅ You’ve successfully completed the exercise if you can:

• Transform static content into dynamic, computed content using Python , R , or Julia .

• Create and display data visualisations.

• Use inline code to insert computed values into prose.

• Experiment with different code cell visibility options.

Independent Contractor 25 / 25 © 2026 Mickaël CANOUIL · CC BY-NC-SA 4.0


	Table of Contents
	1. Session Overview
	1.1. Session 3: Embedding Computations & Code
	1.2. Session Objectives
	1.3. Learning Objectives

	2. Computing Environments
	2.1. Setup R, Python, and/or Julia for Quarto
	2.1.1. R
	2.1.2. Python (uv)
	2.1.3. Julia

	2.2. Engine Configuration
	2.3. What is a Code Cell?
	2.4. Code Cell Structure
	2.5. Why Use Code Cells?
	2.5.1. Reproducibility
	2.5.2. Documentation


	3. Execution Options
	3.1. Setting Execution Options Globally
	3.2. Code Cells Options

	4. Cache and Freeze
	4.1. Two Systems
	4.1.1. Cache: Stores computation results
	4.1.2. Freeze: Prevents re-execution

	4.2. Cache: Development Speed
	4.3. Freeze: Collaboration Control
	4.4. Key Behavioural Differences
	4.5. When to Use Each
	4.5.1. Use Cache When
	4.5.2. Use Freeze When

	4.6. Essential CLI Commands
	4.6.1. Cache Control
	4.6.2. Freeze Management

	4.7. Golden Rules

	5. Parameters
	5.1. What Are Parameters?
	5.2. Defining Parameters
	5.2.1. Python (papermill)
	5.2.2. R (knitr)

	5.3. Passing Parameters: Command Line
	5.4. Passing Parameters: YAML Files
	5.5. Practical Example
	5.5.1. Setup (Jupyter/Python)
	5.5.2. Using parameters
	5.5.3. Command line usage

	5.6. Best Practices
	5.6.1. ✅ Do
	5.6.2. ❌ Avoid

	5.7. Workflow Integration
	5.7.1. Automated reporting


	6. Hands-On Exercise: Adding Computational Power to Your Portfolio
	6.1. Exercise Overview
	6.2. Part 1: Environment Setup
	6.2.1. Python
	6.2.2. R
	6.2.3. Julia

	6.3. Part 2: Replace Static with Dynamic
	6.3.1. Python
	6.3.2. R
	6.3.3. Julia

	6.4. Part 3: Create Your First Visualization
	6.4.1. Python
	6.4.2. R
	6.4.3. Julia

	6.5. Part 4: Experiment with Code Visibility
	6.5.1. Python
	6.5.2. R
	6.5.3. Julia

	6.6. Success Criteria


