Embedding Computations & Code Mickaél

Session 3 CANOUIL

Embedding Computations & Code

Session 3

Mickaél CANOUIL, Ph.D.”

Saturday, the 7th of February, 2026 I

Affiliations

Independent Contractor, Lille, France
ORCID

@ Mickaél CANOUIL, Ph.D.: 0000-0002-3396-4549

Corresponding author: pro@mickael.canouil.dev

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

https://orcid.org/0000-0002-3396-4549
mailto:pro@mickael.canouil.dev

Embedding Computations & Code Mickaél

Session 3 CANOUIL

Table of Contents

1. SESSION OVEIVIEW . . oottt e e e e e e 4
1.1. Session 3: Embedding Computations & Codeooiiiiiiii 5
1.2, SeSSION ObJECLIVESo 5
1.3. Learning Objectiveso o 5

2. CompULiNg ENVIFONMIENESttt e et et 6
2.1. Setup R, Python, and/orJuliaforQuarto............ i 7

200 R 7
2.1.2. Python (UV) ... o 7
203, U . 7
2.2. Engine Configuration i i 8
23. WhatisaCode Cell?. 8
2.4. Code Cell STrUCTUIE e e e e e e e e e e 8
2.5. WhyUse Code Cells? 9
2.5.1. Reproducibilityo 9
2.5.2. DOCUMENTATIONottt e e e e e 9

3. EXECULION OPLiONS . . oo 10
3.1. Setting Execution Options Globally 1
3.2. Code Cells Options oo 1

4. Cache and Fre@zeo 13
4.0 TWO SYSTEIMS ettt e e e e e 14

4.1.1. Cache: Stores computation resultso 14
4.1.2. Freeze: Prevents re-eXeCULIONttt e e 14
4.2. Cache: Development Speedo 14
4.3. Freeze: Collaboration Control o e 14
4.4. Key Behavioural Differences o 14
4.5 WhentoUse Each 15
4.5.1. Use Cache WEN . ..o e 15
4.5.2. UseFreeze When 15
4.6. Essential CLI Commands i 15
4.6.1. Cache CoNtrol 15
4.6.2. Freeze Management 15
4.7. Golden RUIES o 15

B ParamMe el . .o 16
5.0, What Are Parameters?o 17
5.2. Defining Parameters o 17

5.2.1. Python (papermill)oonii e e e e 17
5.2.2. ROKMAET) o 17
5.3. Passing Parameters: Command Line........ i 18
5.4. Passing Parameters: YAML FIleso i 18
5.5. Practical EXample 19

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

5.5.1. Setup JUPYLEr/PYthoN) o 19
5.5.2. USING Paramietersttt et e e e e e 19
5.5.3. Command liNe USAge i 19
5.6. BeSt PractiCes . ..o 19
5.6.0. (D0 . . 19
5.6.2. X AVOIA 19
5.7. Workflow Integration o i 20
5.7.1. Automated repOrting e 20
6. Hands-On Exercise: Adding Computational Power to Your Portfolio................................ 21
6.1, EXErcise OVEIVIEWo\t e e 22
6.2. Part1: ENVIrONmMENt SEUDottt 22
6.2.1. PYtNON 22
6.2.2. R 22
6.2.3. JUL . .o 23
6.3. Part2:Replace Staticwith Dynamic......... i 23
6.3.1. PYthON .. 23
6.3.2. R 23
6.3.3. JUlia . oo 24
6.4. Part3: Create Your First Visualization................ i 24
6.4.1. PYLNON . 24
6.4.2. R 24
6.4.3. JUlia . . o 24
6.5. Part4: Experimentwith Code Visibility 24
6.5.0. PYthON . 24
6.5, 2. R 25
6.5.3. JUla . oo 25
6.6. SUCCESS CriTOIIA . . oottt ettt e e e e e e e e e e 25

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél
SO CANOUIL

1. Session Overview

1.1. Session 3: Embedding Computations & Code
1.2. Session Objectives

1.3. Learning Objectives
L S J

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

1.1. Session 3: Embedding Computations & Code

e
- Computing Environments
» Setup R, Python, and Julia for Quarto.
» Engine configuration and code cell structure.
» Understanding multi-language workflows.

- Execution Options
» Code cell options using comment + pipe syntax.
» Control code visibility, evaluation, and output.
» Global execution settings in YAML.

- Cache and Freeze
» Cache for development speed vs freeze for collaboration.
» Understanding Jupyter and Knitr caching systems.
» CLI commands for cache and freeze management.

- Parameters
» Creating dynamic document variations.
» Defining parameters in Python and R.
» Command-line parameter passing and YAML files.

1.2. Session Objectives

[
This session explores Quarto’s computational capabilities, focusing on seamless multi-language work-
flows, code cell options, and integration patterns for R and Python data science stacks.

1.3. Learning Objectives

By the end of this session, participants will be able to:

- Execute R, Python, Julia code.

- Configure code cells using “comment symbol” + “pipe” (|) syntax.
- Control code visibility and execution.

- Cache computations for improved performance.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél
SO CANOUIL

2. Computing Environments

2.1. Setup R, Python, and/orJulia for Quarto
21.1. R
2.1.2. Python (uv)
2.1.3. Julia
2.2. Engine Configuration
2.3. Whatis a Code Cell?
2.4. Code Cell Structure
2.5. Why Use Code Cells?
2.5.1. Reproducibility
2.5.2. Documentation

L

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

2.1. Setup R, Python, and/orJulia for Quarto

211. R
[JON)

Install renv if not already installed
install.packages("renv"

Initialise project
renv::init()

Install packages
renv:: install("rmarkdown")

Save current state
renv :: snapshot()

2.1.2. Python (uv)

[IO)
Install uv (if not installed)

pip install uv

Initialise project
uv init --no-package --vcs none

Create virtual environment
uv venv

Activate environment
source .venv/bin/activate

Add packages
uv add jupyter papermill

2.1.3. Julia

Start Julia in your project directory
using Pkg

Activate current directory as project
Pkg.activate(".")

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

Add packages
Pkg.add("IJulia")

Instantiate environment
Pkg.instantiate()

2.2. Engine Configuration

Configure engines in your document header:

knitr

jupyter
julia

engine: knitr engine: jupyter engine: julia
T jupyter: python3 -

QTip

Set explicitly the engine in your document header instead of relying on auto-detection which does
not work forinline code (i.e., “{language} ...).

2.3. Whatis a Code Cell?

A code cell (also called a code chunk) is a section of executable code (defined by " “{language})
embedded within your Quarto document.

Code cells allow you to:

- Execute programming code directly in your document.
- Display both the code and its output.
- Create reproducible analyses and reports.

2.4. Code Cell Structure

““{python} ®
#| label: my-plot
#| echo: true
#| fig-cap: "Sample visualization" ®

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

import matplotlib.pyplot as plt
import numpy as np

X = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.title("Sine Wave")

plt.show() ®

(:) Computing language (e.g., python, r, julia).
(:) Code cell options (e.g., label , echo, eval).

(:) Code content (your actual programming code).

2.5. Why Use Code Cells?

2.5.1. Reproducibility 2.5.2. Documentation
- Code and results stay together. - Combine narrative and code.
- Easy to re-run analyses. - Show methodology clearly.

- Version control friendly. - Create living documents.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél
SO CANOUIL

3. Execution Options

3.1. Setting Execution Options Globally

3.2. Code Cells Options
L g J

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

3.1. Setting Execution Options Globally

L
(. o YAML)
execute:
U)
Table3.1: execute options
Option Description
eval Evaluate the code chunk (if false ,justechosthe code into the output).
echo Include the source code in output
output Include the results of executing the code in the output (true , false,or
asis toindicate thatthe outputis raw markdown and should not have any
of Quarto’s standard enclosing markdown).
warning Include warnings in the output.
error Include errorsinthe output (note that thisimplies thaterrors executing code
will not halt processing of the document).
include Catch all for preventing any output (code or results) from being included
(e.g., include: false suppresses all output from the code block).
renderings Specify rendering names for the plot or table outputs of the cell, e.g.,
[light, dark] .See Renderings.

3.2. Code Cells Options

The “comment symbol” + “pipe” (|) syntax allows to pass options to code cells.

Code Visibility Control:

(. o QMD\
o {r}
#| echo: false ©)
#| eval: false ©)
#| include: false ®
#| code-fold: true ®
- J

@ Hide code, show output.

@ Show code, don't execute.

@ Execute code, hide everything.
@ Collapsible code blocks.

Output Control:

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

https://quarto.org/docs/computations/renderings.html

Embedding Computations & Code Mictasl

Session 3 CANOUIL

[JON)
T {r}

#| warning: false
#| message: false

#| error: true

OO

#| output: false

C) Suppress warnings

(:) Suppress messages

@ Show errors for debugging
() Hide all output

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél
SO CANOUIL

4. Cache and Freeze

4.1. Two Systems 1
4.1.1. Cache: Stores computation results
4.1.2. Freeze: Prevents re-execution

4.2. Cache: Development Speed

4.3. Freeze: Collaboration Control

4.4. Key Behavioural Differences

4.5. When to Use Each
4.5.1. Use Cache When
4.5.2. Use Freeze When

4.6. Essential CLI Commands
4.6.1. Cache Control
4.6.2. Freeze Management

4.7. Golden Rules

-

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

4.1. Two Systems

4.1.1. Cache: Stores computation re- 4.1.2. Freeze: Prevents re-execution

sults

- Speeds up development.

- Enables collaboration.
- Project-wide control.

. Works during iteration. - Version control friendly.

- Engine-specific behaviour.

4.2. Cache: Development Speed

Store expensive computation results to avoid re-running during development.

(() () YAML
execute:
cache: true

Two Types:

— |

- Jupyter Cache: Document-level (all-or-nothing).
- Knitr Cache: Cell-level (granular control).

4.3. Freeze: Collaboration Control

Prevent documents from re-executing during project renders.

Results saved in _freeze directory (commit to version control).

(. o YAML w
execute:
freeze: auto # Re-render only when source changes
freeze: true # Never re-render during project render

4.4. Key Behavioural Differences

Action Cache Freeze

Individual document render Used X Ignored

Project render Used Controls execution

Prose changes No effect No effect

Code changes Invalidates cache Triggers re-render (auto mode)

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

4.5. When to Use Each

4.5.1. Use Cache When 4.5.2. Use Freeze When

- Developing multi format documents. - Working in teams.

- Iterating on analysis. - Managing large projects.

- Working with expensive computations. - Environment setup is complex.

- Editing prose frequently. - Results need to be reproducible.

4.6. Essential CLI Commands

4.6.1. Cache Control

(. o BASHW
quarto render --cache # Force cache use
quarto render --no-cache # Disable cache
quarto render --cache-refresh # Force refresh

4.6.2. Freeze Management

(. o BASHW
quarto render document.qmd # Always executes (ignores freeze)
quarto render # Respects freeze settings

4.7. Golden Rules

[
1. Cache for Development.
Use when iterating on individual documents.

2. Freeze for Collaboration.
Use when working with teams or managing large projects.

3. Different Scopes.
- Cache: Session-level performance.
- Freeze: Project-level workflow management.

4. Version Control.
Always commit _freeze directory contents.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél
SO CANOUIL

5. Parameters

r W

5.1. What Are Parameters?
5.2. Defining Parameters
5.2.1. Python (papermill)
5.2.2. R(knitr)
5.3. Passing Parameters: Command Line
5.4. Passing Parameters: YAML Files
5.5. Practical Example
5.5.1. Setup (Jupyter/Python)
5.5.2. Using parameters
5.5.3. Command line usage
5.6. Best Practices

5.6.1. M Do

5.6.2. X Avoid
5.7. Workflow Integration
L 5.7.1. Automated reporting

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

5.1. What Are Parameters?

Parameters allow you to create dynamic variations of the same document:

- Geographic reports — Different locations
- Time-based analysis — Different periods
- Scenario modelling — Different assumptions
- Multi-client reports — Different datasets

QTip

Think of parameters as variables that make your documents code reusable and flexible.

5.2. Defining Parameters

5.2.1. Python (papermill)

L IO
#| tags: [parameters]
alpha = 0.1

ratio = 0.5
country = "UK"
year = 2024

- Mustuse #| tags: [parameters] comment.
- Provide sensible default values.

- Parameters available in top-level environment.
- Works with .gmd and .ipynb files.

5.2.2. R(knitr)

title: "Sales Report"
params:
region: "North"
start_date: "2024-01-01"
threshold: 1000

Access in R code:

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

print(params[["region"1])

5.3. Passing Parameters: Command Line

Usethe -P (--execute-param) flag to override parameter values:

Single parameter
quarto render report.gmd --execute-param country:France

Multiple parameters
quarto render report.gqmd -P year:2023 -P region:Europe

With output specification
quarto render report.gmd -P country:Germany --to typst

5.4. Passing Parameters: YAML Files

Create reusable parameter sets with YAML files:

(JON L JON
country: "Spain" quarto render report.gmd \
year: 2023 --execute-params params.yml

budget: 50000

Q@ Benefits

Version control, team sharing, complex configurations.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3

CANOUIL

5.5. Practical Example

5.5.1. Setup (Jupyter/Python)

5.5.3. Command line usage

(o o QMD) (o o BASH)
" {{python}} quarto render sales.gmd \
#| tags: [parameters] --execute-param region:North \
region = "All" --execute-param quarter:Q2
m m \ J
quarter = "Q1
min_sales = 1000
L o) Q Results
5.5.2. Using parameters Customised report for North region, Q2 data.
(. o QuD h
“"{{python}}
if region #* "All":
df = df[df['region'] = region]
df_filtered = df[df['sales'] >
min_sales]
title = f"{region} Sales -
{quarter}"
(& /

5.6. Best Practices

5.6.1. M Do

- Provide meaningful defaults.

- Use descriptive names.

- Document parameter types.

- Validate values in code.

- Use YAML for complex configs.

Independent Contractor

5.6.2. X Avoid

- Generichames (x , val).

- Parameters without defaults.
- Hardcoded values.

- Overly complex structures.

© 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

5.7. Workflow Integration

5.7.1. Automated reporting
L IO

Daily reports
quarto render report.gqmd -P date:"$(date +%Y-%m-%d)"

Multiple outputs
for region in North South East West; do

quarto render regional.gqmd -P region:$region
done

@ Perfect for

CI/CD pipelines, batch processing, scheduled reports.

© 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Independent Contractor

Embedding Computations & Code Mickaél
SO CANOUIL

6. Hands-On Exercise: Adding Computa-

tional Power to Your Portfolio

6.1. Exercise Overview
6.2. Part1: Environment Setup
6.2.1. Python
6.2.2. R
6.2.3. Julia
6.3. Part2: Replace Static with Dynamic
6.3.1. Python
6.3.2. R
6.3.3. Julia
6.4. Part3: Create Your First Visualization
6.4.1. Python
6.4.2. R
6.4.3. Julia
6.5. Part 4: Experiment with Code Visibility
6.5.1. Python
6.52. R
6.5.3. Julia
6.6. Success Criteria

L J

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mictasl

Session 3 CANOUIL

6.1. Exercise Overview

L

Objective: Transform your Session 2 portfolio document into a computational showcase by adding live
code execution, demonstrating the power of embedding computations in Quarto documents using
modern Python tools.

Example Code: Exercises

tar -xzf "03-exercises.tar.gz" -C "03-embedding-computations-code"

6.2. Part1: Environment Setup

Choose your language and update your YAML header:

6.2.1. Python
o0

title: "My Computational Portfolio"
author: "Your Name"
engine: jupyter
jupyter: python3
execute:
echo: true
warning: false

Install packages:

uv add polars plotnine # pip install polars plotnine

6.2.2. R
| 0N

title: "My Computational Portfolio"
author: "Your Name"
engine: knitr
execute:
echo: true
warning: false

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

assets/exercises/03-exercises.tar.gz

Embedding Computations & Code Mictasl

Session 3 CANOUIL

Install packages:

| 0N
install.packages(c("dplyr", "ggplot2"))

6.2.3. Julia
[JON)

title: "My Computational Portfolio"
author: "Your Name"
engine: julia
execute:
echo: true
warning: false

Install packages:

using Pkg
Pkg.add(["DataFrames", "Plots", "StatsPlots"])

6.3. Part2: Replace Static with Dynamic

Replace your skills table from Session 2:

6.3.1. Python

- Create a Polars DataFrame with your skills data.

- Include columns: skill name, confidence level, hours practiced.

- Use print() todisplay the data nicely.

- Calculate total practice hours with p1l.sum() .

- Show the result using inline code “{python} your_calculation’

6.3.2. R

- Createa data.frame withyourskills data.

- Include columns: skill name, confidence level, hours practiced.
- Use knitr::kable() todisplay the table nicely.

- Calculate total practice hours with sum() .

- Show the result usinginlinecode “{r} your_calculation’ .

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

6.3.3. Julia

- Createa DataFrame with your skills data.

- Include columns: skill name, confidence level, hours practiced.

- Display the DataFrame directly.

- Calculate total practice hours with sum() .

- Show the result using inline code “{julia} your_calculation’ .

6.4. Part3: Create Your First Visualization

Make a chart of your skills:

6.4.1. Python

- Use plotnine to create a bar chart.

- Try geom_col() or geom_bar() .

- Add proper labels with 1abs() .

- Use theme_minimal() forclean styling.
- Add a figure caption with #| fig-cap: .

6.4.2. R

- Use ggplot2 to create a bar chart.

- Try geom_col() or geom_bar() .

- Add proper labels with labs() .

- Use theme_minimal() forcleanstyling.
- Add a figure caption with #| fig-cap: .

6.4.3. Julia

- Use Plots.jl to create a bar chart.

- Try bar() function.

- Add proper labels with xlabel!() and ylabel!() .
- Add atitlewith title!() .

- Add a figure caption with #| fig-cap: .

6.5. Part 4: Experiment with Code Visibility

Try different code cell options:

6.5.1. Python

- Createacell with #| eval: false (showscode, doesntrun).
- Make a collapsible section with #| code-fold: true.

- Hide code with #| echo: false butshow output.

- Use #| include: false fordatasetup.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

Embedding Computations & Code Mickaél

Session 3 CANOUIL

6.52. R

- Createacellwith #| eval: false (showscode, doesntrun).
- Make a collapsible section with #| code-fold: true.

- Hide code with #| echo: false butshow output.

- Use #| include: false forlibraryloading.

6.5.3. Julia

- Createacell with #| eval: false (showscode, doesntrun).
- Make a collapsible section with #| code-fold: true .

- Hide code with #| echo: false butshow output.

- Use #| include: false for packageimports.

6.6. Success Criteria

You've successfully completed the exercise if you can:

- Transform static content into dynamic, computed content using Python, R, orJulia.
- Create and display data visualisations.

- Use inline code to insert computed values into prose.

- Experiment with different code cell visibility options.

Independent Contractor © 2026 Mickaél CANOUIL - CCBY-NC-SA 4.0

	Table of Contents
	1. Session Overview
	1.1. Session 3: Embedding Computations & Code
	1.2. Session Objectives
	1.3. Learning Objectives

	2. Computing Environments
	2.1. Setup R, Python, and/or Julia for Quarto
	2.1.1. R
	2.1.2. Python (uv)
	2.1.3. Julia

	2.2. Engine Configuration
	2.3. What is a Code Cell?
	2.4. Code Cell Structure
	2.5. Why Use Code Cells?
	2.5.1. Reproducibility
	2.5.2. Documentation

	3. Execution Options
	3.1. Setting Execution Options Globally
	3.2. Code Cells Options

	4. Cache and Freeze
	4.1. Two Systems
	4.1.1. Cache: Stores computation results
	4.1.2. Freeze: Prevents re-execution

	4.2. Cache: Development Speed
	4.3. Freeze: Collaboration Control
	4.4. Key Behavioural Differences
	4.5. When to Use Each
	4.5.1. Use Cache When
	4.5.2. Use Freeze When

	4.6. Essential CLI Commands
	4.6.1. Cache Control
	4.6.2. Freeze Management

	4.7. Golden Rules

	5. Parameters
	5.1. What Are Parameters?
	5.2. Defining Parameters
	5.2.1. Python (papermill)
	5.2.2. R (knitr)

	5.3. Passing Parameters: Command Line
	5.4. Passing Parameters: YAML Files
	5.5. Practical Example
	5.5.1. Setup (Jupyter/Python)
	5.5.2. Using parameters
	5.5.3. Command line usage

	5.6. Best Practices
	5.6.1. ✅ Do
	5.6.2. ❌ Avoid

	5.7. Workflow Integration
	5.7.1. Automated reporting

	6. Hands-On Exercise: Adding Computational Power to Your Portfolio
	6.1. Exercise Overview
	6.2. Part 1: Environment Setup
	6.2.1. Python
	6.2.2. R
	6.2.3. Julia

	6.3. Part 2: Replace Static with Dynamic
	6.3.1. Python
	6.3.2. R
	6.3.3. Julia

	6.4. Part 3: Create Your First Visualization
	6.4.1. Python
	6.4.2. R
	6.4.3. Julia

	6.5. Part 4: Experiment with Code Visibility
	6.5.1. Python
	6.5.2. R
	6.5.3. Julia

	6.6. Success Criteria

