This function allows to visualise results from load_rcc()
or normalise()
several quality-control metrics in an interactive shiny application,
in which thresholds can be customised and exported.
Arguments
- nacho_object
[list] A list object of class
"nacho"
obtained fromload_rcc()
ornormalise()
.
Examples
if (interactive()) {
data(GSE74821)
# Must be run in an interactive R session!
visualise(GSE74821)
}
if (interactive()) {
library(GEOquery)
library(NACHO)
# Import data from GEO
gse <- GEOquery::getGEO(GEO = "GSE74821")
targets <- Biobase::pData(Biobase::phenoData(gse[[1]]))
GEOquery::getGEOSuppFiles(GEO = "GSE74821", baseDir = tempdir())
utils::untar(
tarfile = file.path(tempdir(), "GSE74821", "GSE74821_RAW.tar"),
exdir = file.path(tempdir(), "GSE74821")
)
targets$IDFILE <- list.files(
path = file.path(tempdir(), "GSE74821"),
pattern = ".RCC.gz$"
)
targets[] <- lapply(X = targets, FUN = iconv, from = "latin1", to = "ASCII")
utils::write.csv(
x = targets,
file = file.path(tempdir(), "GSE74821", "Samplesheet.csv")
)
# Read RCC files and format
nacho <- load_rcc(
data_directory = file.path(tempdir(), "GSE74821"),
ssheet_csv = file.path(tempdir(), "GSE74821", "Samplesheet.csv"),
id_colname = "IDFILE"
)
visualise(nacho)
# (re)Normalise data by removing outliers
nacho_norm <- normalise(
nacho_object = nacho,
remove_outliers = TRUE
)
visualise(nacho_norm)
# (re)Normalise data with "GLM" method and removing outliers
nacho_norm <- normalise(
nacho_object = nacho,
normalisation_method = "GLM",
remove_outliers = TRUE
)
visualise(nacho_norm)
}