Derived slopes from a cubic splines mixed-effects model by egg_model()
.
Source: R/egg_slopes.R
egg_slopes.Rd
Derived slopes for different intervals based on a fitted
cubic splines mixed-effects model from egg_model()
.
This function a specific version of compute_slopes
designed to work specifically on egg_model()
.
Arguments
- fit
A model object from a statistical model such as from a call to
egg_model()
.- period
The intervals knots on which slopes are to be computed.
- knots
The knots as defined
fit
and according tomethod
.
Examples
data("bmigrowth")
res <- egg_model(
formula = log(bmi) ~ age,
data = bmigrowth[bmigrowth[["sex"]] == 0, ],
id_var = "ID",
random_complexity = 1
)
#> Fitting model:
#> nlme::lme(
#> fixed = log(bmi) ~ gsp(age, knots = c(1, 8, 12), degree = rep(3, 4), smooth = rep(2, 3)),
#> data = data,
#> random = ~ gsp(age, knots = c(1, 8, 12), degree = rep(1, 4), smooth = rep(2, 3)) | ID,
#> na.action = stats::na.omit,
#> method = "ML",
#> control = nlme::lmeControl(opt = "optim", niterEM = 25, maxIter = 500, msMaxIter = 500)
#> )
head(
egg_slopes(
fit = res,
period = c(0, 0.5, 1.5, 3.5, 6.5, 10, 12, 17),
knots = c(1, 8, 12)
)
)
#> ID pred_period_0 pred_period_0.5 pred_period_1.5 pred_period_3.5
#> 1 001 2.747393 2.992282 2.992529 3.019458
#> 2 004 2.584858 2.832240 2.837474 2.874377
#> 3 005 2.599374 2.848047 2.855865 2.897935
#> 4 006 2.502765 2.745423 2.741210 2.759217
#> 5 007 2.617232 2.883761 2.927290 3.040782
#> 6 009 2.599044 2.838782 2.828728 2.835054
#> pred_period_6.5 pred_period_10 pred_period_12 pred_period_17 slope_0--0.5
#> 1 3.214495 3.451351 3.572620 3.801536 0.4897771
#> 2 3.084375 3.338686 3.469928 3.723779 0.4947641
#> 3 3.115684 3.379037 3.515447 3.782216 0.4973477
#> 4 2.940873 3.162117 3.274465 3.481078 0.4853166
#> 5 3.365663 3.754004 3.961836 4.407158 0.5330585
#> 6 2.999186 3.199988 3.300654 3.478063 0.4794758
#> slope_1.5--3.5 slope_6.5--10 slope_12--17
#> 1 0.013464430 0.06767327 0.04578315
#> 2 0.018451388 0.07266023 0.05077011
#> 3 0.021034975 0.07524382 0.05335370
#> 4 0.009003884 0.06321273 0.04132261
#> 5 0.056745807 0.11095465 0.08906453
#> 6 0.003163061 0.05737191 0.03548179