Skip to contents

Plot derived slopes from a model fitted by time_model().

Usage

plot_slopes(
  fit,
  method,
  period = c(0, 0.5, 1.5, 3.5, 6.5, 10, 12, 17),
  knots = list(cubic_slope = NULL, linear_splines = c(0.75, 5.5, 11), cubic_splines =
    c(1, 8, 12))[[method]]
)

Arguments

fit

A model object from a statistical model such as from a call to time_model().

method

The type of model provided in fit, i.e., one of "cubic_slope", "linear_splines" or "cubic_splines".

period

The intervals knots on which AUCs are to be computed.

knots

The knots as defined fit and according to method.

Value

A patchwork ggplot2 object.

Examples

library(ggplot2)
library(eggla)
data("bmigrowth")
ls_mod <- time_model(
  x = "age",
  y = "log(bmi)",
  cov = NULL,
  data = bmigrowth[bmigrowth[["sex"]] == 0, ],
  method = "linear_splines"
)
#> nlme::lme(
#>   fixed = log(bmi) ~ gsp(age, knots = c(0.75, 5.5, 11), degree = rep(1, 4), smooth = rep(0, 3)),
#>   data = data,
#>   random = ~ gsp(age, knots = c(0.75, 5.5, 11), degree = rep(1, 4), smooth = rep(0, 3)) | ID,
#>   na.action = stats::na.omit,
#>   method = "ML",
#>   control = nlme::lmeControl(opt = "optim", maxIter = 500, msMaxIter = 500)
#> )
plot_slopes(
  fit = ls_mod,
  method = "linear_splines"
)
#> Warning: log-10 transformation introduced infinite values.